
DeepSign: Efficient Siamese Convolutional Neural Networks for Signature
Verification

Jonathan X Wang
Stanford University

Biomedical Informatics
jon.wang@ucsf.edu

Kevin Ko
Stanford University
Computer Science

kevinko@cs.stanford.edu

Abstract

Signatures are a common form of verification and a tar-
get for fraud. Current state of the art verification algorithms
involve siamese convolutional neural networks. Here, we
apply siamese convolutional neural networks that are both
efficient and high performing for the task of signature ver-
ification. We created our own SqueezeNet-inspired effi-
cient architecture, DeepSign, that uses 65% fewer parame-
ters than Google’s MobileNetv2 and 97% fewer parameters
than the current state of the art, SigNet. We test our models
on both the CEDAR and BHSig260 datasets and demon-
strate that our model outperforms both models in all evalu-
ation metrics (accuracy: 0.85, precision: 0.76, recall: 0.84,
AUROC: 0.93). This lightweight model is readily applica-
ble to mobile devices for both online or offline signature
verification.

1. Introduction

Signatures are widely used as verification for checks,
contracts, and prescription drugs. This makes signatures a
common target for fraud. Manual fraud detection conducted
by human experts is not only time consuming, but expen-
sive due to the volume of signatures and the cost to hire an
expert inspector. Due to recent advances in facial identi-
fication verification algorithms, we are interested in using
similar algorithms for mobile automated signature verifica-
tion. The following study explores the potential for an au-
tomated, open-source, and efficient deep learning model for
signature verification.

1.1. Problem Statement

The input to our algorithm is a pair of signatures s1i
and s2i. We then use a Siamese neural network to output
whether these signatures are from the same person or that
one of them is forged.

2. Related Work

Work in the field of automated signature verification had
its first major breakthroughs in the 1980s [1]. These meth-
ods generally involve labor intensive preprocessing and fea-
ture extraction on signatures which were then compared
using a similarity metric [2, 3, 4]. In 2004, the first in-
ternational signature verification task was announced [5],
marking the beginning of larger collections of datasets like
CEDAR and BHSig260 for public use [6, 7]. More re-
cently, advances in computing power and databases for im-
age classification like ImageNet have resulted in algorithms
known as neural networks to gain popularity due to their
high performance without feature extraction [8, 9]. In 2012,
AlexNet demonstrated the ability of convolutional neural
networks (CNNs) to to generate state of the art results
on ImageNet classification [8]. More recently, an study
known as SigNet demonstrated that convolutional siamese
networks outperform all previous work in signature verifi-
cation tasks [10]. For this reason, we focus our baseline and
experimental models on the siamese network architecture.

The siamese neural network architecture, originally pro-
posed in 1994, consists of two identical neural networks that
share the same parameters and weights [11]. During train-
ing, these two networks share the same parameter updates.
In addition, these networks have been shown to generate
state of the art performance for facial recognition tasks as
well [12].

Recent work has been done to develop models that
achieve similar classification results on ImageNet, but with
fewer parameters. The effort here is to develop models for
faster evaluation with less memory and hard drive space.
This is particularly applicable for real-time offline mobile
signature verification on mobile phones or areas with poor
network access. One recently developed mobile model is
known as SqueezeNet, which is cited to achieve perfor-
mance similar to AlexNet but with 50x fewer parameters
and 0.5MB model size. Additionally, this architecture has
been shown to perform well on facial verification tasks,

1



Figure 1. Overview of technical approach using a siamese neural network. First, we pre-process inputs gathered from scanned signatures
or a mobile/web application. Secondly, we feed these two inputs into two of the same models that generates embedding representations
of these two images. Finally, we use the distance between these two embeddings as an input into a contrastive loss function for training.
After training, this distance can also be used to generate a prediction about whether the pair is forged or from the same person.

which points towards a potential application in signature
verification as well [13, 14].

The most recent state of the art in mobile models is
MobileNetv2, developed by Google [15]. MobileNetv2
features an inverted residual structure with shortcut con-
nections between bottleneck layers, an intermediate expan-
sion layer using depthwise convolutions, and the removal
non-linearities in narrow layers to maintain representational
power. Additionaly, this model has pretrained weights on
ImageNet readily available for public use. A variety of
recent work has demonstrated that transfer learning from
pretrained weights can lead to high performance on smaller
datasets such as ours [16, 17].

3. Methods
We use Tensorflow 2.0a, scikit-learn 0.21, OpenCV 4.1,

Matplotlib 3.1, and Python 3.6 frameworks for this project

[18, 19, 20, 21, 22]. We base our baseline and experi-
mental models off a recent study SigNet, which demon-
strated that convolutional siamese networks outperform all
previous work in signature verification tasks [10]. Figure 1
shows an overview of our approach for this task.

3.1. Siamese Neural Network Architecture

The siamese neural network architecture consists of two
identical neural networks that share the same parameters
and weights during training, but recieve two different inputs
[11]. The last layer of the two identical networks consists of
a dense layer, which create two vector outputs of the same
dimensionality. The two outputs are joined by a contrastive
loss function [23] that computes a similarity metric between
the scores such that forged-original pairings lead to a higher
loss while original-original pairings lead to lower loss (1).

L(s1i, s2i, yi) = (1−yi)Dw2
i +yi max(0,m−Dwi)

2 (1)



Here, s1i and s2i are the ith pairing of signatures; yi is
a binary variable that designates whether pairing i consists
of original-original (1) or forged-original (0) pair; m is the
margin, which is equal to 1 in our case. Dw is the Euclidean
distance between the two outputs of the shared sub-model.

This unique loss function leads to the generation of an
embedding space where vector outputs of the siamese net-
works that are closer in Euclidean distance are more likely
to be original-original pairings.

3.2. Baselines

Our baseline model is SigNet, which has state of the art
performance on the datasets we have acquired [10]. SigNet
is a convolutional siamese network with identical neural
networks that are constructed as outlined in Table 1. Pre-
processing is handled identically to the paper, except we
binarize our data rather than normalize and perform an ad-
ditional smoothing step. We do not anticipate these changes
to cause any significant differences in network performance.
We use the same hyperparameters reported in the paper. The
only modification is we used early stopping when validation
accuracy began decreasing. For more details on the archi-
tecture, see the original SigNet paper [10].

Layer Parameters Output Shape
Conv2D k = 11, s = 4 (37, 53, 96)

BatchNorm2D ε = 10−6, ρ = 0.9 (37, 53, 96)
MaxPool2D k = 3, s = 2 (18, 26, 96)

ZeroPadding2D pad = 2 (22, 30, 96)
Conv2D k = 5, s = 1 (18, 26, 256)

BatchNorm2D ε = 10−6, ρ = 0.9 (18, 26, 256)
MaxPool2D k = 3, s = 2 (8, 12, 256)

Dropout p = 0.3 (8, 12, 256)
ZeroPadding2D pad = 1 (10, 14, 256)

Conv2D k = 3, s = 1 (8, 12, 384)
ZeroPadding2D pad = 1 (10, 14, 384)

Conv2D k = 3, s = 1 (8, 12, 256)
MaxPool2D k = 3, s = 2 (3, 5, 256)

Dropout p = 0.3 (3, 5, 256)
Flatten - (3840,)
Dense kernel L2 = .0005 (1024,)

Dropout p = 0.5 (1024,)
Dense kernel L2 = .0005 (128,)

Table 1. SigNet Architecture

3.3. Experimental Models

The goal of the following experimental models is to find
a model with lower number of parameters and model stor-
age size for offline mobile applications of signature verifi-
cation.

Our first experimental model involves transfer learning

from a MobileNetv2 pretrained on ImageNet [15]. A vari-
ety of recent work has demonstrated that transfer learning
can lead to high performance on smaller datasets such as
ours [16, 17]. MobileNetv2 uses a unique inverted residual
block, known as bottleneck, which involves an intermediate
expansion layer that incorporates depthwise convolutions to
filter features. Additionally, it removes non-linearities in the
lower dimensional layers to prevent the loss of representa-
tional power. In specific, these blocks are composed of a
convolutional layer using 1×1 kernel and ReLU activation,
a depthwise convolutional filter using a 3 × 3 kernel and
ReLU activation, and finally a convolutional linear using a
1× 1 kernel and linear activation. We remove the top layer
of the MobileNetv2 and freeze all the weights in the original
model. One problem we encountered is that the pre-trained
models require a 3-channel input, and since our images are
grey-scaled they start with only a single channel. To fix
this issue, we run our input through a 10 filter 1 × 1 kernel
convolutional layer and a 3 filter 1× 1 kernel convolutional
layer, both of which preserve the image size and use ReLU
activations. This has been shown to be an effective way to
convert 1-channel to 3-channel for use in pretrained models
[24]. Finally we add a global average pooling layer, dense
layer, dropout layer, dense layer, and an L2 normalization
layer to produce the outputs. The overall structure of the
adapted MobileNetv2 architecture is outlined in Table 2.

Layer Parameters Output Shape
Conv2D k = 1, s = 1 (224, 224, 10)
Conv2D k = 1, s = 1 (224, 224, 3)

MobileNetv2 - (7, 7, 1280)
GlobalAvgPool2D - (1280,)

Dense kernel L2 = .00047 (512,)
Dropout p = 0.24 (512,)
Dense kernel L2 = .00047 (128,)

L2 Norm - (128,)

Table 2. Adapted MobileNetv2 Architecture

Our second experimental model named DeepSign is
adapted from SqueezeNet, in particular, it exploits the use
of Fire blocks. Fire blocks are composed of a convolutional
layer using 1×1 kernel followed by two branching convolu-
tional layers with 1×1 and 3×3 kernels. The last layer in the
Fire block concatenates the two results. The sqz parameter
in the Fire block indicates the number of filters for initial
layer in the block. Additionally, the exp parameters dic-
tates the number of filters for the branching convolutional
layers. We propose a shallower version of the SqueezeNet
model that overall has a fewer number of filters and includes
dropout layers for regularization. In the top-most block of
our DeepSign model we opt out of using traditional fully
connected layers and instead use a global average pooling
layer to output the spatial average of the feature maps from



the last convolutional layer. Doing so reduces the number of
trainable parameters vastly and also reduces issues of over-
fitting that apply to fully connected layers [25]. The overall
structure of the adapted DeepSign architecture is outlined
in Table 3.

Layer Parameters Output Shape
Conv2D k = 3, s = 2 (149, 179, 64)
MaxPool2D k = 3, s = 2 (74, 89, 64)
Fire sqz = 16, exp = 64 (74, 89, 128)
Fire sqz = 16, exp = 64 (74, 89, 128)
MaxPool2D k = 3, s = 2 (36, 44, 128)
Dropout p = 0.2 (36, 44, 128)
Fire sqz = 32, exp = 72 (36, 44, 144)
Fire sqz = 32, exp = 96 (36, 44, 192)
Fire sqz = 32, exp = 128 (36, 44, 256)
MaxPool2D k = 3, s = 2 (17, 21, 256)
Dropout p = 0.2 (17, 21, 256)
Conv2D k = 1, s = 1 (17, 21, 256)
GlobalAvgPool2D - (256,)
Dense - (128,)
L2 Norm - (128,)

Table 3. DeepSign Architecture

Table 4 summarizes the reduced model complexity that
both DeepSign and MobileNetv2 offer.

Model Parameters Storage Size (MB)
SigNet 6,460,974 25

MobileNetv2 721,589 12
DeepSign 256,992 1.1

Table 4. DeepSign and MobileNetv2 demonstrate advantages in
both number of trainable parameters of the models and model stor-
age size.

4. Dataset
We use the following datasets for our task:

• CEDAR (America): 55 persons, 24 genuine sig-
natures per person, 24 forged signatures per person
(https://cedar.buffalo.edu/handwriting/HRdatabase.html)
[6]

• BHSig260 (Bengali): 260 persons, 24 genuine sig-
natures per person, 30 forged signatures per person
(https://goo.gl/9QfByd) [7]

We generate our train/validation/test sets by performing
a 60/20/20 random split by person. Since our data consists
of pairs of signatures, we make all possible unique combi-
nations from the signatures. Specifically, we create nega-
tive examples, namely forged-original pairs, by taking ev-
ery forged signature for a person and pairing them with that

person’s original signatures. In CEDAR’s case, there would
be 24 × 24 = 576 forged-original pairs for every person.
To create the positive examples, namely original-original
pairs, we take every original signature for a person and pair
it with the remaining person’s original signatures. For the
CEDAR dataset, there would be

∑24
i=1 i = 300 original-

original pairs for every person.
We also used a combined dataset composed of both

CEDAR and BHSig260.
Table 5 summarizes the total number of examples we had

in our train/validation/test sets per dataset.

Dataset Train Validation Test
CEDAR 28, 116 9, 372 9, 372

BHSig260 180, 180 60, 060 60, 060
Combined 208, 296 69, 432 69, 432

Table 5. Dataset Splits

4.1. Pre-processing

4.1.1 CEDAR

First, we grayscale all images. Next, we apply a binary
threshold to clamp all pixel values that are ≥ 225 at 255,
and all other values at 0. Because of the handwritten nature
of the CEDAR dataset, there is a lot of noise on the edges of
the signature. To remove this noise, we apply a median blur
with kernel size 3 for 15 iterations, and then apply a binary
threshold at 210. Lastly, the image is resized using binary
interpolation to the desired height and width and is inverted
such that the background and signature are, respectively, 0
and 1. For SigNet, we resize to 155×220 as specified in the
original paper. For MobileNetv2, we resize to 224× 224 as
specified by the pretrained MobileNetv2 model in Tensor-
flow Keras. Finally, for DeepSign, we resize the image to
300.

4.1.2 BHSig260

This dataset was originally grey scaled and binarized. Thus,
we simply resized the image through binary interpolation
and inverted the image such that the background and sig-
nature are, respectively, 0 and 1. We resize according to
dimensions specified above in CEDAR data pre-processing.

5. Experimental details

5.1. Training parameters

For the SigNet baseline, we used the same hyperparam-
eters from the original paper, except for the number of
epochs. We performed early stopping as soon as the valida-
tion accuracy began to decrease, which occured at 3 epochs.



Even using these lower complexity models, each epoch
still required around 10-20 minutes on a NVIDIA Tesla-
V100 due to our large dataset size. This made it difficult
to perform hyperparameter search. For MobileNetv2 and
DeepSign, we choose to use the Adam optimizer as it has
been shown to have less variance in performance based on
other hyperparameters [26]. Additionally, we chose to use
a batch size of 32 on both MobileNetv2 and DeepSign due
its faster training time per epoch.

For the MobileNetv2 architecture, we found that the de-
fault learning rate of 0.001 generated a very high validation
accuracy of 0.97. We train the model for 5 epochs because
there was a noticeable plateau in validation accuracy after 5
epochs. After fixing the number of epochs and the learning
rate, we tuned the model for 8 hours on randomly sampled
values of the l2 regularization from a logarithmic scale of
0.0001 to 0.01 and dropout rate from a uniform scale of 0
to 0.4. Ultimately, the best values found were 0.00047 and
0.24 respectively.

For the DeepSign architecture, we mainly focused on the
squeeze and expand parameters in the Fire blocks. We ini-
tially encountered the model overfitting to the training data,
which lead to poor performance on the validation data. We
reduced the number of filters used in the convolutional lay-
ers and decreased the depth of the network and then tuned
the dropout probabilities to 0.2 to decrease variance and
then number of parameters. The biggest performance gain
was achieved by reducing the learning rate to 0.00003.

5.2. Evaluation

We report accuracy, precision, recall and AUROC for our
evaluation metrics. Accuracy is calculated using a threshold
on the euclidean distance between s1i and s2i, such that any
distance above the threshold is considered a forged-original
pair, while any pair below the threshold is considered a
original-original pair. These predictions are then compared
to their true identity to generate an accuracy score. This
threshold is chosen by generating a plot of the accuracy
against threshold on the validation set and choosing the
threshold which yields the maximum accuracy on the vali-
dation set. Thus, each model has its own unique threshold
(i.e. 0.30 for SigNet and 0.70 for SqueezNet FILL THIS
IN), which is applied to the test set to generate a final accu-
racy metric. These same thresholded values are used to cal-
culate both precision and recall as well, which are standard
metrics for how relevant and how complete the predicted
original-original pairings are. AUROC is calculated using
standard metrics and represents the overall ability of the
model to discriminate between forged-original and original-
original pairs.

We plot an ROC-curve to visualize the tradeoff between
sensitivity and specificity between our model. We also per-
form a qualitative analysis on 9 high, middle, and low dis-

tances between pairs outputed by DeepSign.

Initially, we train on all datasets combined and test the
model on the individual datasets as well as the combined
dataset. To analyze the generalizability of our model to
new languages and datasets, we also train our models on
the CEDAR dataset and test them on both the CEDAR and
BHSig260 datasets.

6. Results and Discussion

We first train our model on the entire dataset, and gen-
erate evaluation metrics for testing on the CEDAR, BH-
Sig260, and combined dataset (Table 6). Our DeepSign
model outperforms both SigNet and MobileNetv2 in accu-
racy for both individual datasets and overall. This is partic-
ularly surprising, as we expected the MobileNetv2 transfer-
learned from ImageNet to perform best. We suspect our
prediction task may be very different from the original Im-
ageNet task, and that fully training the MobileNetv2 or un-
freezing some layers may result in better performance. Ad-
ditionally, DeepSign outperforms on all metrics for the BH-
Sig260 and overall dataset. On the CEDAR dataset, how-
ever, it only performs best on accuracy. This suggests that
the DeepSign model may be overfitting to the BHSig260
dataset, as it makes up a larger proportion of the training
data. This led us to question the generalizability of the
model to different datasets or languages, as it seemed to be
more prone to overfitting to the BHSig260 dataset.

To investigate the generalizability of the model, we per-
formed an experiment where we trained a model on the
CEDAR (American) and tested it on both the CEDAR and
BHSig260 (Bengali) datasets (Table 7). There are two in-
teresting findings that we had from this experiment. First,
after training specifically on the CEDAR dataset rather than
the combined dataset (as in Table 6), DeepSign outperforms
the other two models in all metrics except precision, while
previously when trained on the combined dataset, it only
performed best on accuracy. This suggests that training on
data for the specific test set can make a big difference in
certain evaluation metrics such as AUROC. Secondly, when
training on CEDAR and testing on BHSig260, we see that
DeepSign performs significantly better on all four metrics.
This suggests we may have found a model that not only
outperforms in evaluation metrics and has a smaller number
of parameters, but may also be more generalizable to other
languages or datasets overall.

Finally, we plot an ROC curve that demonstrates the
tradeoff between sensitivity and specificty along a range of
threshold values (Figure 2). Overall, we see that DeepSign
overshadows the other two models.



Test Database Model Accuracy Precision Recall AUROC

CEDAR Signature Database
SigNet 0.73 0.59 0.65 0.79

MobileNetv2 0.72 0.65 0.28 0.72
DeepSign 0.74 0.51 0.57 0.72

BHSig260 Signature Database
SigNet 0.81 0.69 0.75 0.85

MobileNetv2 0.75 0.63 0.65 0.78
DeepSign 0.92 0.83 0.85 0.95

Combined Database
SigNet 0.79 0.66 0.75 0.84

MobileNetv2 0.76 0.65 0.70 0.82
DeepSign 0.85 0.76 0.84 0.93

Table 6. Evaluation metrics for each database using models trained on the combined dataset.

Train/Test Database Model Accuracy Precision Recall AUROC

CEDAR/CEDAR
SigNet 0.65 0.70 0.15 0.78

MobileNetv2 0.68 0.67 0.22 0.72
DeepSign 0.76 0.65 0.59 0.80

CEDAR/BHSig260
SigNet 0.65 0.53 0.26 0.64

MobileNetv2 0.63 0.52 0.12 0.59
DeepSign 0.74 0.82 0.50 0.86

Table 7. Generalizability of models to new languages. Evaluation metrics for models trained on one dataset and tested on the other.

Figure 2. Receiver operating characteristic curve of SigNet baseline and SqueezeNet architectures demonstrates better performance of
SqueezeNet by around 0.02

7. Qualitative visualization and evaluation

Recall that DeepSign consists of two identical networks
which are fed s1 and s2 to generate two different embed-
dings. The distance between these embeddings is thresh-
olded and used to predict whether the pairing is original-
original or forged-original. We performed a qualitative vi-
sualization of these embedding distances on DeepSign’s
outputs by taking 9 image pairs that had high, medium, and

low euclidean distances on a model trained on the combined
data and tested on the combined data (Figure 3). Overall,
we see that the algorithm does seem to learn some feature
presentation related to the structure of the signatures, such
that the euclidean distance between these embeddings is far-
ther when signatures appear to be more different.



Figure 3. Three examples of high, medium, and low euclidean distance pairings from the training and testing on the combined dataset with
DeepSign. Examples demonstrate how farther euclidean distances between embeddings also look less similar visually.

8. Conclusions and Future Work

We present a model, DeepSign, that has 25x fewer
parameters and storage size and additionally outperforms
SigNet, a state of the art signature verification model on
both CEDAR and BHSig260 datasets in accuracy, preci-
sion, recall, and AUROC. Additionally, we show our model
also outperforms a transfer-learned MobileNetv2, which is
a state of the art mobile image classification model de-
veloped by Google. We also experiment with training on
CEDAR, and testing on BHSig260. These results suggested
that DeepSign may also be more robust for use on different
languages and new data.

We suspect that DeepSign performed better than the Mo-
bileNetv2 as it was trained from scratch. Future work in-
volves investigating training part of MobileNet or all of
MobileNet and seeing how well it performs. We are also
interested in performing a wider hyperparameter search, ex-
perimeting with SGD optimizers, and ensembling models to
improve performance. Finally, we hope to develop an on-
line web or mobile application for users to test the signature
verification algorithm, as well as collect more training data
(with user consent). The web app will be developed using
React and TensorflowJS. We hope this web application will
expand our dataset and draw more visibility to this field.

9. Contributions & Acknowledgements

Kevin Ko: Data pre-processing, deepsign, signet base-
line

Jonathan Wang: Hyperparameter tuning framework,
transfer learned model, literature review

We adapted code from the following sources for our
project:
Contrastive loss function:
http://yann.lecun.com/exdb/publis/pdf/hadsell-chopra-
lecun-06.pdf
Transfer learning for MobileNetv2:
https://keras.io/applications/

References

[1] Franck Leclerc and Rejean Plamondon. Automatic signature
verification: The state of the art1989–1993. In Progress in
Automatic Signature Verification, pages 3–20. World Scien-
tific, 1994. 1

[2] Rejean Plamondon and Guy Lorette. Automatic signature
verification and writer identificationthe state of the art. Pat-
tern recognition, 22(2):107–131, 1989. 1

[3] Vishvjit S Nalwa. Automatic on-line signature verification.
Proceedings of the IEEE, 85(2):215–239, 1997. 1



[4] Anil K Jain, Friederike D Griess, and Scott D Con-
nell. On-line signature verification. Pattern recognition,
35(12):2963–2972, 2002. 1

[5] Dit-Yan Yeung, Hong Chang, Yimin Xiong, Susan George,
Ramanujan Kashi, Takashi Matsumoto, and Gerhard Rigoll.
Svc2004: First international signature verification competi-
tion. In International conference on biometric authentica-
tion, pages 16–22. Springer, 2004. 1

[6] Meenakshi K Kalera, Sargur Srihari, and Aihua Xu. Offline
signature verification and identification using distance statis-
tics. International Journal of Pattern Recognition and Arti-
ficial Intelligence, 18(07):1339–1360, 2004. 1, 4

[7] Srikanta Pal, Alireza Alaei, Umapada Pal, and Michael Blu-
menstein. Performance of an off-line signature verification
method based on texture features on a large indic-script sig-
nature dataset. In 2016 12th IAPR Workshop on Document
Analysis Systems (DAS), pages 72–77. IEEE, 2016. 1, 4

[8] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.
Imagenet classification with deep convolutional neural net-
works. In Advances in neural information processing sys-
tems, pages 1097–1105, 2012. 1

[9] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In 2009 IEEE conference on computer vision and
pattern recognition, pages 248–255. Ieee, 2009. 1

[10] Sounak Dey, Anjan Dutta, J Ignacio Toledo, Suman K
Ghosh, Josep Lladós, and Umapada Pal. Signet: Convolu-
tional siamese network for writer independent offline signa-
ture verification. arXiv preprint arXiv:1707.02131, 2017. 1,
2, 3

[11] Jane Bromley, Isabelle Guyon, Yann LeCun, Eduard
Säckinger, and Roopak Shah. Signature verification using
a” siamese” time delay neural network. In Advances in neu-
ral information processing systems, pages 737–744, 1994. 1,
2

[12] Florian Schroff, Dmitry Kalenichenko, and James Philbin.
Facenet: A unified embedding for face recognition and clus-
tering. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 815–823, 2015. 1

[13] Sheng Chen, Yang Liu, Xiang Gao, and Zhen Han. Mobile-
facenets: Efficient cnns for accurate real-time face verifica-
tion on mobile devices. In Chinese Conference on Biometric
Recognition, pages 428–438. Springer, 2018. 2

[14] Klemen Grm, Vitomir Štruc, Anais Artiges, Matthieu Caron,
and Hazım K Ekenel. Strengths and weaknesses of deep
learning models for face recognition against image degrada-
tions. Iet Biometrics, 7(1):81–89, 2017. 2

[15] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zh-
moginov, and Liang-Chieh Chen. Mobilenetv2: Inverted
residuals and linear bottlenecks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pages 4510–4520, 2018. 2, 3

[16] Hong-Wei Ng, Viet Dung Nguyen, Vassilios Vonikakis, and
Stefan Winkler. Deep learning for emotion recognition on

small datasets using transfer learning. In Proceedings of the
2015 ACM on international conference on multimodal inter-
action, pages 443–449. ACM, 2015. 2, 3

[17] Hoo-Chang Shin, Holger R Roth, Mingchen Gao, Le Lu,
Ziyue Xu, Isabella Nogues, Jianhua Yao, Daniel Mollura,
and Ronald M Summers. Deep convolutional neural net-
works for computer-aided detection: Cnn architectures,
dataset characteristics and transfer learning. IEEE transac-
tions on medical imaging, 35(5):1285–1298, 2016. 2, 3

[18] Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene
Brevdo, Zhifeng Chen, Craig Citro, Greg S. Corrado, Andy
Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat,
Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Is-
ard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Man-
junath Kudlur, Josh Levenberg, Dan Mané, Rajat Monga,
Sherry Moore, Derek Murray, Chris Olah, Mike Schuster,
Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Tal-
war, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fer-
nanda Viégas, Oriol Vinyals, Pete Warden, Martin Watten-
berg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. Tensor-
Flow: Large-scale machine learning on heterogeneous sys-
tems, 2015. Software available from tensorflow.org. 2

[19] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss,
V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Ma-
chine learning in Python. Journal of Machine Learning Re-
search, 12:2825–2830, 2011. 2

[20] G. Bradski. The OpenCV Library. Dr. Dobb’s Journal of
Software Tools, 2000. 2

[21] J. D. Hunter. Matplotlib: A 2d graphics environment. Com-
puting in Science & Engineering, 9(3):90–95, 2007. 2

[22] G. van Rossum. Python tutorial. Technical Report CS-
R9526, Centrum voor Wiskunde en Informatica (CWI), Am-
sterdam, May 1995. 2

[23] Raia Hadsell, Sumit Chopra, and Yann LeCun. Dimensional-
ity reduction by learning an invariant mapping. In 2006 IEEE
Computer Society Conference on Computer Vision and Pat-
tern Recognition (CVPR’06), volume 2, pages 1735–1742.
IEEE, 2006. 2

[24] Jeremy Howard. Cutting edge deep learning for coders. 3

[25] Min Lin, Qiang Chen, and Shuicheng Yan. Network In Net-
work. arXiv e-prints, page arXiv:1312.4400, Dec 2013. 4

[26] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014. 5


