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Every year, 60,000-100,000 Americans die of complications arising from deep vein thrombo-
sis (DVT), blood clots that form in deep lower extremity veins. DVT is the leading cause of
preventable hospital death for trauma patients, and despite 0.1% of the population receiving
a new diagnosis annually, DVT is underdiagnosed due to nonspecific symptoms, diagnostic
difficulty, and overburdened radiologists, especially when examining trauma patients with
other urgent conditions. Developing computer-aided detection (CAD) systems would alle-
viate these concerns; however, current systems classify computed tomography (CT) slices
individually and yield many false positives from DVT-like dark spots in poorly contrasted
areas. Recent advances in deep neural networks (DNNs) allow us to leverage spatial depen-
dencies between slices in imaging studies to identify false positives and ultimately deploy
DNN systems that lighten physicians workloads while not exacerbating alarm fatigue. To
train our DNN, we have acquired 119 lower-body CT imaging studies labeled by radiol-
ogists for DVT at the pixel level. Using these studies, we have developed a DNN-based
CAD system that will (1) segment targeted deep veins in a CT slice, (2) classify whether a
DVT is present within multiple slices given segmentations of deep veins, and (3) evaluate
different deep learning approaches for handling 3D datasets for DVT detection. For segmen-
tation, we use a 2D U-Net, 2D VGG encoder-decoder, and 3D U-Net and find that VGG
performs best (Dice: 0.07, IoU: 0.48, AUROC: 0.78). For classification, we use a 2D ResNet,
CNN-RNN, and 3D Inception model with and without segmentation masks. We find that
our CNN-RNN without masks performs best in AUROC (Average Precision: 0.31, AUROC
0.64) and 3D Inception with masks performs best in average precision (Average Precision:
0.33, AUROC: 0.62). By developing more effective detection algorithms, we hope to ensure
more frequent and accurate diagnosis of DVT, thereby reducing its high mortality rate.
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1. Introduction

Deep vein thrombosis (DVT) is a blood clot commonly found in deep veins of the lower
extremities. Approximately 2.5-5% of individuals in the United States will be affected by DVT
during their lifetime.! Pulmonary Embolism (PE) is a fatal complication that can arise when
DVT goes undetected or is left untreated, and is caused by clots breaking off and traveling into
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the lungs.? According to some studies, it is the leading cause of preventable hospital death for
trauma patients®* and the leading cause of maternal mortality,® resulting in 60,000-100,000
American deaths annually.

Despite its high prevalence, DVT continues to be under-diagnosed in the clinical setting.°
One reason for this is the nonspecific physical symptoms of DVT, including swelling, pain,
tenderness, and redness in the area of the thrombosis.” Another reason arises due to the
diagnostic difficulty. Common risk factors include injury and trauma, where DVT can be
overshadowed by the primary diagnoses.* A study of severe trauma patients found that three
cases of DVT and three cases of PE were missed when 205 CT scans were reviewed by an
independent radiologist.* Finally, physician burnout has been on the rise, and even though
half of blood clots form following a clinical visit, the sheer number of cases and immediate risks
commonly associated with DVT (e.g. obesity, pregnancy, trauma) overburden physicians.8?

One potential solution to these problems are computer-aided detection (CAD) systems
whereby patients at risk are automatically screened for blood clots (and potentially other
diagnoses). Although Ultrasound (US) is most commonly used for the diagnosis of DVT, the
results of recent studies suggest that Computed Tomography (CT) venography studies can
have equal or greater diagnostic power and may be preferable for patients who are also being
examined for PE, in which a CT angiography is required, rather than performing two separate
diagnostic tests.!0:!1

A major challenge in developing such
systems is that the quality of a CT venog-
raphy study relies on proper diffusion and
timing of a venous contrast injection prior
to the imaging study being performed. In
areas of confluence and turbulent blood
flow, hypodense streaks may occur on the
resulting CT images.'? These streaks may
resemble a DVT when visualizing a single
slice of a CT study and can therefore lead
to false positives when analyzing the slices
individually. Fortunately, the false positive
streaks tend to span more slices than a true
DVT, and therefore can be distinguished meeption Cun (apy 02 No DVT

from DVT by leveraging spatial informa- —— LDVT
tion between adjacent slices, just as radi- _

ologists do when they analyze CT studies

for DVT.

Methods for incorporating 3D spatial
context have only recently become avail-
able. Increased computational power and
larger datasets have led to a resurgence of
deep neural networks (DNNs) and progress
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Fig. 1: Inputs, outputs, and models used to ac-
complish the two primary tasks in this study:
segmentation and classification.



in the field of computer vision. Many networks have been trained on millions of images and
are easily adapted for new tasks. We are optimistic that this new technology, coupled with
innovative architectures to process 3D spatial information, will resolve many of the diagnostic
difficulties arising from the low contrast areas.

In this study, we aim to (1) segment targeted deep veins in a CT slice, (2) classify whether
a DVT is present within multiple slices given segmentations of deep veins, and (3) evaluate
different deep learning approaches for handling 3D datasets for DVT detection. In our segmen-
tation task, a CT slice or set of slices is passed as input to our model and a binary segmentation
mask that highlights deep veins of interest is outputted from our model. For classification,
we input a CT slice or set of slices, and we output a single binary value indicating whether
the center slice contains a DVT. For both tasks, we employ 2D models as a baseline, and
compare their performance to various 3D approaches. An overview of our workflow is depicted
in Figure 1.

2. Related Work

To the best of our knowledge, no computer-aided detection (CAD) systems have been
developed for the automated detection of deep vein thrombosis (DVT) from computed to-
mography (CT) studies. However, 3D convolutional approaches have demonstrated superior
performance to 2D approaches for the related task of detecting pulmonary embolism in chest
CT studies, achieving a sensitivity of 83% with 2 false positives per volume. This is the current
state of the art for computer-aided pulmonary embolism detection.'®

In 2016, two major approaches for leveraging 3D spatial information in computer vision
tasks emerged: (1) 3D convolutional neural networks (CNNs) such as 3D U-Net,!* and (2) 2D
CNN and recurrent neural network (RNN) hybrids such as the FCN-RNN hybrid developed
by Chen et al.'® 3D U-Net has already been demonstrated to outperform U-Net,'¢ its 2D
counterpart, in many segmentation tasks.!'” 19 Likewise, the RNN-CNN hybrid outperformed
U-Net in segmenting 3D neuronal and fungal structures.'® However, no studies have compared
the effectiveness of the two approaches, so we utilize architectures from both approaches in

an effort to compare their performance.

3. Data

We were granted access to a dataset consisting of 119 lower extremity computed tomogra-
phy (CT) studies from 97 Stanford patients, 22 of whom had two CT studies performed. Each
study consisted of 29 to 1,519 grayscale slices with pixel values represented by 16-bit unsigned
integers. Anywhere from 0 to 1,031 slices were annotated by a radiologist. See Figure 2 for
distributions of slices per study and annotated slices per study. Slices without an annotation
were assumed to be negative for DVT in our classification task based on our knowledge of
how the data was annotated. Our dataset was split randomly by patient ID into training,
validation, and testing subsets at a ratio of 60% - 20% - 20%.
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Fig. 2: Distribution of slices per CT study and of annotated slices per CT study.

4. Methods
4.1. Data Pre-processing

For both the segmentation and classification tasks, CT slices were resized to 224 x 224
pixels from 512 x 512 pixels in an effort to make their dimensions compatible with weights pre-
trained on ImageNet for our models. The pixel values were mean-centered and standardized
according to the mean and standard deviation of the pixel values of images in our training
set. For the classification task, pixel values were clipped to the interval [0,4095].

Depending on the dimension and task, our definition of an example from our dataset
changed. For our 2D baselines, individual slices were treated as separate examples for input
to the models with their corresponding mask/label the targeted output. For the 3D segmen-
tation task, chunks of 8 consecutive CT slices were used as input to the models, with the
corresponding 8 consecutive binary deep vein masks used as the targeted output. Thus, our
input and output dimensions for 3D segmentation were 8 x 224 x 224 pixels. For the 3D
classification task, the input consisted of chunks of 11 consecutive CT slices, and the targeted
output was a single binary indicator of whether DVT was present in the center slice of the
chunk. The number of consecutive slices to include was selected based on its ability to capture
the entirety of a true DVT, allowing the model to identify false positives that typically span
more slices than a true DVT. Images on the edges of the input volume were included in our
examples by padding the chunks with empty images.

4.2. Data Augmentation

The training set of reference images and masks was augmented in order to combat over-
fitting. A generator was developed for the segmentation task that applied simple transforma-
tions to both 2D and 3D training examples. Rotations up to 72°, shifts up to 5% of the width
and height, reflections over the x-axis, and scaling up to 5% were permitted. The parameters
for image augmentation were selected based on a brief hyperparameter search according to
segmentation performance on the validation set. For classification, a training generator that
permitted reflections over both the x-axis and y-axis with a probability of 0.5 was used.



4.3. Segmentation

4.3.1. Models

We implement three convolutional neural network (CNN) architectures for the deep vein
segmentation task. All of these networks have architectures consisting of an encoder, which
takes an image and generates a high dimensional feature matrix, and a decoder, which takes
a high dimensional feature matrix and generates a segmentation mask.

The first model is a 2D U-Net. Convolutional layers in the encoder are separated by max
pooling operations while the second half are separated by upsampling operations.'® U-Net is
known for its increased precision in segmentation that results from concatenating high res-
olution features to outputs in the decoder. It yields state of the art performance on image
segmentation tasks in biological contexts with fast train and test speeds. This is especially
important for the potential application of real-time DV'T image segmentation. Our implemen-
tation of U-Net involves 10 convolutional layers, selected according to a brief hyperparameter
search (infrastructure especially inspired by??). The inputs to this model are individual 224 x
224 pixel images, and the outputs are equivalently shaped masks.

A modified VGG16 architecture was implemented for our second segmentation model. This
model uses the encoder from the original VGG16 model,?! but adds a decoder that mirrors
the encoder’s max pooling layers with upsampling. The major advantage of this architecture
is that it allows for transfer learning in the encoder by using weights that were pre-trained on
ImageNet. By using weights that were trained on a larger data set, we decrease the likelihood
of over-fitting to the training set. Like our 2D U-Net, this model takes 224 x 224 pixel images
as input and outputs an equivalently shaped mask.

The third CNN architecture employed for the segmentation task was a 3D implementation
of U-Net. This model is capable of performing volumetric segmentation.?? The model archi-
tecture is very similar to that of U-Net, with 2D convolutions and max pooling operations
replaced by 3D variants. The input to this model consists of a volume of 8 adjacent images,
each 224 x 224 pixels. Its outputted masks maintain this shape at 8 x 224 x 224 pixels.

4.3.2. Loss Function

The choice of loss function is especially important with the presence of class imbalance,
as is the case in in this study. The ratio of pixels representing deep veins to those that do
not is approximately 1:536 in our training set. We experimented with dice loss and weighted
binary cross-entropy loss. Ultimately, we found that dice loss had the best performance on
our validation set:
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where N is the number of pixels in the image, t; is the true label for a pixel, and p; is the
probability output by the model. The 1 is added for smoothing in case the denominator would
ever become zero.



4.3.3. Evaluation

Model performance was evaluated using traditional metrics of segmentation performance,
including intersection over union (IoU),?3 and dice coefficient.?* We perform an additional
pixel-wise analysis where we treat each pixel as a binary classification task of containing deep
vein tissue (1) or not (0). We then plot a receiver operating characteristic (ROC) curve, which
demonstrates the trade-off between sensitivity and specificity across a range of probability
thresholds. Hyperparameters including learning rate, number of layers, and layer activation
function were determined according to model performance on these metrics on the validation
set.

4.4. Classification

4.4.1. Models

To approach the DVT classification task, we utilized both 2D and 3D images. Our 2D
images used a single CT slice in the study. For the 2D images, we utilized a standard 2D
CNN. The 3D images utilized 11 slices in the study: 5 of the slices before, the center slice,
and 5 slices after. Our 3D models were trained to predict DVT for the center slice. For the
3D volumes, we utilized a CNN-RNN and a 3D CNN. In all cases, we also experimented with
providing the labeled segmentation masks of the veins as an extra channel.

Our 2D CNN utilized the ResNet18 architecture?> pretrained on ImageNet. This archi-
tecture presents residual connections that act as shortcuts, skipping one or more layers in
the network. Consequently, this network becomes easier to optimize, addresses the vanishing
gradient problem, and also has groundbreaking performance on the ImageNet dataset. The
final layers are a global average pooling and a fully connected layer with a softmax activation
to output a probability over the two possible classes.

The 3D CNN-RNN also utilized the ResNet18 architecture. For the 11 slices, we passed
them individually through the CNN, creating a feature vector for each one of the slices. Then,
we pass each of the feature vectores through a bidirectional LSTM and a final fully connected
layer, predicting the output for the middle slice.

The Kinetics 3D Inception model?® utilizes a 3D version of Google’s Inception v3 network.
This network utilizes different convolutional layers in parallel and concatenates the results
together. Unlike the CNN-RNN, this model uses a 3D kernel to run over multiple slices,
incorporating this spatial information in the convolution calculations. In recent work, this has
been shown to produce state of the art results for lung cancer screening on CT scans.?”

4.4.2. Loss Function
For our classification problem, we used the Cross Entropy Loss on the softmax probability
outputs:

1 M C
_ Z) ~(7
L= M;zyﬁ log(5(")

where M is the batch size, C is the number of classes (i.e., 2), y is the ground truth label, and §
is the probability output of the model. Additionally, we added weight decay regularization to
our loss function to penalize the model for having large weights, thereby reducing over-fitting.



4.4.3. Fvaluation

To analyze our classification performance, we examined area under the receiver operator
characteristic (AUROC) and average precision (AP). Because we have a unbalanced dataset
with more negative examples, accuracy is not the best metric, as a null classifier could have
very high accuracy (e.g., if 80% of the data were negative, then the null classifier would classify
80% correctly by always guessing the majority class).

AUROC shows the true positive rate (££) as a function of false positive rate (££), where
the different values are a result of changing the classification threshold of the model. Essen-
tially, this metric allows us to choose a false positive rate (what percent of negatives we miss
classify as positives) that we accept and tells us how correctly we label the positives.

AP shows precision (7p-55) as a function of recall (4%). Essentially, we can choose the
percent of true case that we want to catch (recall) and then show how many true positives
compare to false positives. Therefore, for our problem, the average precision is the strongest
metric, as we want to minimize the number of false positives resulting from poor CT contrast.

5. Results
5.1. Segmentation

Table 1 illustrates the performance of Recewer operating charactenstic
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mance. The 2D U-Net model had the worst
performance on the validation and test set
despite middling performance on the train-
ing set indicating over-fitting. This over-
fitting problem is especially present for the
3D U-Net architecture, which despite its
superior performance on the training set,
performed worse than the 2D VGG archi-
tecture with and without weights on the
validation and test sets.

Figure 3 depicts the performance of
each model according to pixel-wise binary
classification metrics of specificity and sen-
sitivity. The ranking of the area under the
receiver operating characteristic (AUROC)

False Positive Rate

Fig. 3: Segmentation test ROC curve.

(b) 2D U-Net (c) 3D U-Net

(a) Ground Truth (d) VGG

(e) VGG Pre-trained

Fig. 4: Example deep vein segmentations from
a random test set image on all four models.



recapitulates the results presented by the segmentation metrics. In particular, the VGG net-
work with a pre-trained encoder has the best performance followed closely by the VGG network
without pre-training. This model’s performance is followed by that of the 3D U-Net, and fi-
nally by the 2D U-Net. With an AUROC of 0.48, the 2D U-Net has almost no prediction
power. One interesting feature is that the pre-trained encoder appears to regularize the ROC
curve of the VGG network. In particular, transfer learning improves performance when the
false positive rate is set to low values, whereas the curve for non-pre-trained encoder hugs the

diagonal at these low false positive values.

Table 1: Segmentation performance on inter-
section over union and dice coefficient metrics.

Model Metric Training Validation Test
2D U-Net Dice 0.12 0.01 0.01
IoU 0.23 0.05 0.04
2D VGG Dice 0.31 0.05 0.05
IoU 0.56 0.43 0.46
2D VGG Pre-trained Dice 0.38 0.12 0.07
IoU 0.67 0.55 0.48
3D U-Net Dice 0.46 0.09 0.04
IoU 0.72 0.41 0.42

5.2. Classification

Table 2 shows the classification results for
both the validation and test sets on all mod-
els. Figure 5 shows the ROC and precision-
recall curves for our models, which demon-
strate the performance of the model across a
range of probability thresholds. In the valida-
tion dataset, the 2D ResNet with masks per-
forms best in both the AUROC and average
precision. In the test set, the CNN-RNN has the
best AUROC and the 3D inception with masks
has the best average precision. Overall, we do
see a slight increase in performance on the test
set when we use the 3D models: CNN-RNN and
3D Inception. However, adding the segmenta-
tion masks to the models does not necessarily
help the model.

Finally, Figure 4 presents a qualitative
analysis of the relative ability of all four
models to segment the deep veins from a
randomly selected image from the test set
(ground truth shown on the left). The 2D
U-Net in this case predicts almost all the
pixels in the image to belong to a deep vein.
The VGG with pre-trained encoder is able
to segment slightly large circles around
each of the deep veins, whereas the VGG
model without pre-trained weights appears
to have a general sense of the area of the
CT scan. Finally, the 3D U-Net appears to
have functioned as essentially a null classi-
fier.

Table 2: Classification performance for our
models on AUROC and average precision
evaluation metrics.

Model Metric Validation Test
2D ResNet AUROC 0.80 0.60
Avg. Precision 0.74 0.29
2D ResNet, Masks AUROC 0.82 0.59
Avg. Precision 0.77 0.27
CNN-RNN AUROC 0.81 0.64
Avg. Precision 0.77 0.31
CNN-RNN, Masks AUROC 0.79 0.59
Avg. Precision 0.70 0.26
3D Inception AUROC 0.81 0.63
Avg. Precision 0.70 0.30
3D Inception, Masks AUROC 0.73 0.62
Avg. Precision 0.70 0.33
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Fig. 5: Performance of DVT classification models on the test set.

6. Discussion

In segmentation, we find our models perform rather
poorly on the task, with a highest dice coefficient of 0.07
and intersection over union of 0.48 for the VGG model with
pre-trained weights. One factor that may contribute to this
poor performance is missing deep veins in the segmentation
masks provided by the labeling radiologist (Figure 6). Addi-
tionally, these missing masks seem to be disproportionately
impacting the 3D model as a particular vein may not be
traced fully through the volume, thus the model learns to
be more careful in mask prediction. We believe one potential
solution to mitigate this problem would be to ensure that
masks are symmetric during data pre-preprocessing. We are
also interested in restructuring the 3D model, such that the
segmentations predicted from a volume is the single center
slice rather than a volume of slices. We believe this may

Fig. 6: Example of ground
truth annotation missing vein
in red circle.

help the 3D model become more robust to the label issue as well.

Interestingly, our VGG outperforms U-Net, which traditionally has been shown to generate
state of the art results on biological applications. The major functional difference between the
models is that U-Net concatenates layers from the encoder in the decoder. We hypothesize
that this concatenation is contributing to the over-fitting problem, as it increases the variance
of the model. Additionally, our results validate the importance of pre-training, as the VGG
model had better performance with pre-trained weights than without pre-trained weights.

For classification, our main issue seems to arise from our train, validation, and test split
(Table 2). With limited tuning, our validation set results are disproportionately greater than



Fig. 7: Distribution of deep veins in the train, validation, and test set images. Each pixel
represents the proportion of slices that had a deep vein annotation that included the pixel.

our test sets, with an AUROC of 0.82 and average precision of 0.77 in comparison to an
AUROC of 0.64 and average precision of 0.33 on the test. We believe our small dataset size is
leading to significant differences in the characteristics of the data splits. We randomly split our
data into train, validation, and test sets based on patient ID. However, if the distribution of
the test set randomly happens to be different from that of our validation set, our model would
not be able to generalize to this different distribution, especially since we have limited labeled
data. For example, in the validation set, 15% of slices were positive for DVT, while in the
test only 11% were positive for DVT. Without these issues, it does seem that the algorithms
are performing well based on the validation metrics. Interestingly, the dataset splitting issue
seems to be less of a problem in the segmentation task than in the classification task, since
the difference between validation and test performance is less. However, the locations of the
ground truth deep veins appear fairly different between all dataset splits (Figure 7).

As with most medical imaging studies, our work is limited to data from a single institution.
Thus, it is likely that we are over-fitting to certain institutional practices, such as imaging
instrument quality and patient admission diagnoses. The dataset also comes from patients
seeing an interventional radiologist, rather than general trauma patients, which is the intended
use case. Unfortunately, our models currently do not perform well enough to be used as part
of a computer aided detection system in clinical practice.

Our main interest is further iteration on our models to get interpretable and clinically
relevant performance. Of primary importance is fixing the data issues with missing labels, as
well as generating a more balanced data split through some form of matching based on CT
study statistics. Additionally, we had limited time for hyperparameter tuning, and strongly
believe that a more extensive hyperparameter search could yield much better model perfor-
mance. Finally, we would be interested in performing ensembling, as this has also been shown
to improve performance, especially in cases of over-fitting.?
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