

DeepSign: Efficient Siamese Convolutional Neural Networks for Real-time Signature Verification

Jonathan X. Wang, Kevin Ko jon.wang@ucsf.edu, kevinko@cs.stanford.edu

Prediction Task

- Signatures are a common form of verification and a target for fraud
- We apply efficient and high performing siamese convolutional neural networks for the task of real-time signature verification.
- Input: a pair of signatures s1 and s2.
- <u>Output</u>: whether these signatures are from the same person

Figure 1. Flow diagram of prediction task.

Data

- CEDAR (American): n=55, 24 genuine signatures per person, 24 forged signatures per person [1].
- BHSig260 (Bengali): n=260, 24 genuine signatures 2. per person, 30 forged signatures per person [2].
- We generate our train/val/test sets by performing a 60/20/20 random split by person (Table 1).
- We use all unique signature pairings from the datasets (e.g. in CEDAR there would be 25^2 forged-original pairs and $\sum_{i=1}^{24} i = 300$ original-original pairs per person).

	Dataset	Train	Validation	Test
	CEDAR	28,116	9,372	9,372
Dataset	BHSig260	180, 180	60,060	60,060
Splits	Combined	208, 296	69,432	69,432

SigNet MobileNetv2 DeepSign

[5].

Model

3.

Table 2. DeepSign and MobileNetv2
 efficiency over SigNet

network on ImageNet [4].

Test Database	Model	Accuracy	Precision	Recall	AUROC
CEDAR Signature Database	SigNet	0.73	0.59	0.65	0.79
	MobileNetv2	0.72	0.65	0.28	0.72
	DeepSign	0.74	0.51	0.57	0.72
BHSig260 Signature Database	SigNet	0.81	0.69	0.75	0.85
	MobileNetv2	0.75	0.63	0.65	0.78
	DeepSign	0.92	0.83	0.85	0.95
Combined Database	SigNet	0.79	0.66	0.75	0.84
	MobileNetv2	0.76	0.65	0.70	0.82
	DeepSign	0.85	0.76	0.84	0.93

- DeepSign outperforms in every evaluation metric on the combined test set
- DeepSign shows greatest ability to generalize to new datasets and languages

Train/Test Database	Model	Accu
	SigNet	0.6
CEDAR/CEDAR	MobileNetv2	0.6
	DeepSign	0.7
	SigNet	0.6
CEDAR/BHSig260	MobileNetv2	0.6
	DeepSign	0.7

Table 5. Generalization of models to different languages

Architectures

L2 Norm

We use three architectures for our study: SigNet, the state of the art in signature verification on our dataset [3].

2. An adapted and pre-trained MobileNetv2 network, state of the art performing mobile

DeepSign, which is made up of Fire blocks from the SqueezeNet architecture (Table 3)

Parameters	Storage Size (MB)
6,460,974	25
721,589	12
256,992	1.1

Results

Layer	Parameters	Output Shape
Conv2D	k = 3, s = 2	(149, 179, 64)
MaxPool2D	k = 3, s = 2	(74, 89, 64)
Fire	sqz = 16, $exp = 64$	(74, 89, 128)
Fire	sqz = 16, $exp = 64$	(74, 89, 128)
MaxPool2D	k = 3, s = 2	(36, 44, 128)
Dropout	p = 0.2	(36, 44, 128)
Fire	sqz = 32, $exp = 72$	(36, 44, 144)
Fire	sqz = 32, $exp = 96$	(36, 44, 192)
Fire	sqz = 32, exp = 128	(36, 44, 256)
MaxPool2D	k = 3, s = 2	(17, 21, 256)
Dropout	p = 0.2	(17, 21, 256)
Conv2D	k = 1, s = 1	(17, 21, 256)
GlobalAvgPool2D	-	(256,)
Dense	-	(128,)
L2 Norm	-	(128.)

Table 3. DeepSign Architecture

combine dataset

Table 4. Evaluation of

models trained on

Figure 1. DeepSign outperforms both MobileNet and SigNet in AUROC

- of our evaluation metrics
- real-time signature verification.
- bottleneck blocks in MobileNetv2.

[1] Meenakshi K Kalera, Sargur Srihari, and Aihua Xu. Offline signature verification and identification using distance statis- tics. International Journal of Pattern Recognition and Arti- ficial Intelligence, 18(07):1339-1360, 2004

[2] Srikanta Pal, Alireza Alaei, Umapada Pal, and Michael Blu-menstein. Performance of an off-line signature verification method based on texture features on a large indic-script sig- nature dataset. In 2016 12th IAPR Workshop on Document Analysis Systems (DAS), pages 72–77. IEEE, 2016

[3] Sounak Dey, Anjan Dutta, J Ignacio Toledo, Suman K Ghosh, Josep Llado s, and Umapada Pal. Signet: Convolu- tional siamese network for writer independent offline signa- ture verification. arXiv preprint arXiv:1707.02131, 2017

[4] MarkSandler, AndrewHoward, MenglongZhu, AndreyZh-moginov, and Liang-Chieh Chen. Mobilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 4510–4520, 2018

Visualization

• Our model is able to generate an embedding representations of signatures, where visually similar signatures have lower distances

Conclusion & Next Steps

DeepSign has 25x fewer parameters and storage size then the state of the art SigNet, and outperforms in all

• We have developed a publicy avilable web application (deepsign.koplex.io) that can perform

Future work includes hyperparameter tuning, ensembling, and further investigation into using the

References