

# DeepDoc: NLP with Deep Neural Networks for the American Board of Internal Medicine Certification Exam



Jonathan X. Wang, Britni Chau, Kinbert Chou [jonwang1, britnic, klchou]@stanford.edu

## **Prediction Task**

- No system currently exists that assists physicians through natural language queries and direct answers.
- Rapidly growing amount of literature makes it harder for physicians to find relevant information for treatment [1].
- As a first pass, can we train a neural network to answer review questions for a physician certification exam?

#### Data

- 3564 examples were scraped from 2012, 2015, and 2018 review questions.
- Each question is comprised of a question, accompanying context passage, and 4 or 5 answer choice selections.
- We do a time split to capture ability to generalize on future problems.
  - Train: 2364 examples (2012, 2016).
  - Dev: 600 examples (1/2 of 2018).
  - Test: 600 examples (1/2 of 2018).

## Example of a question:

Passage: A 76-year-old woman is evaluated... rapid ventricular rate.

**Question**: Which of the following is the most appropriate acute treatment?

**Answer Options:** A. Adenosine B. Amiodarone C. Cardioversion D. Diltiazem E. Metoprolol

Correct answer: C. Cardioversion.

**Explanation:** This patient with atrial fibrillation is hemodynamically unstable and should undergo immediate cardioversion...or diltiazem could worsen the pulmonary edema.

# **Approach and Results**



**Figure 1.** Flow diagram of prediction task.

- DrQA used to extract relevant explanations from training set when evaluating on dev/test. Top 3 explanations are used as input.
- Models include GA, SAR adapted from RACE [2]. And a modified BiDAF baseline.



**Figure 4.** ROC models for top-performing models and baselines.

| Model                   | Accuracy |
|-------------------------|----------|
| Random                  | 0.222    |
| BiDAF Baseline          | 0.273    |
| SAR Baseline            | 0.310    |
| GA Baseline             | 0.360    |
| SAR w/ BioEmbeddings    | 0.322    |
| GA w/ BioEmbeddings     | 0.377    |
| SAR w/ DrQA*            | 0.325    |
| GA w/ DrQA*             | 0.373    |
| SAR w/ DrQA and tuning* | 0.335    |
| GA w/ DrQA and tuning*  | 0.335    |
| Ensembled Model         | 0.337    |

**Figure 2.** Prediction Results demonstrate strong performance of GA model for this task.

| Model                | Accuracy |
|----------------------|----------|
| Correct Explanations | 0.340    |
| DrQA Explanations    | 0.337    |

Figure 3. Ensembled model with correct explanations vs. with DrQA explanations show little difference, suggesting difficulties in reading comprehension or lack of signal.



**Figure 5.** Precision-Recall curve for top-performing models and baselines.

## Analysis

| Examples | Relevant Explanation (%) | Helpful Explanation (%) |
|----------|--------------------------|-------------------------|
| Top 5    | 0.266                    | 0.133                   |
| Bottom 5 | 0.200                    | 0.066                   |

Figure 6. Looked at the top and bottom 5 scoring explanations (30 explanations total) and found that only 7-13% of cases had helpful explanations.

- Tuning didn't perform well, likely due to searching too wide of a space.
- Our model could benefit from different comprehension architectures, or a better search corpus.

## **Conclusion & Next Steps**

- Demonstrate relatively good performance of the GA model, especially compared to RACE (MC task dataset) baseline of 40%, and a 50-60% passing score on the exam.
- Next steps include:
  - Character embeddings
  - Longer hyperparameter search
  - Validation on an official released exam
  - Try DrQA on wikipedia or UpToDate

# Acknowledgments & References

Thank you to Jonathan H. Chen and Yuhao Zhang for their assistance and advising of this project.

1] D. T. Durack, "The weight of medical knowledge.," The New England journal of medicine vol. 298, no. 14, pp. 773–5, 1978

[2] G. Lai, Q. Xie, H. Liu, Y. Yang, and E. Hovy, "RACE: Large-scale ReAding Comprehension Dataset From Examinations," apr 2017.